Two Technologies Being Considered for 5G PHY Layer

Dr. Fuyun Ling
Twinclouds Consulting, LLC
Technology 1: In-Band Full Duplex (IBFD) Communications
Introduction

- Full Duplex wireless communications based on self-interference cancellation have been attracted attention in recent years.
- Its operation principle is very similar to the decades-old echo-cancellation full duplex wireline modems with some differences due to the operating environment.
- In this presentation, their similarities and differences will be presented.
- The theoretical achievable cancellation performance will be summarized.
- The possible applications and the limitations of this technique are discussed.
Full-Duplex Wireless Communication with Self-Interference Cancellation

- Coding/Modulation
- DAC Up-conversion/Filtering/RF-PA
- Analog Canceller
- LNA/Down-conversion/Filtering/ADC

Tx Data → Coding/Modulation → DAC Up-conversion/Filtering/RF-PA → Analog Canceller → LNA/Down-conversion/Filtering/ADC → Rx Data

Tx Symbols → Demod./digital echo canceller/decoding → Analog Canceller

Tx Signal → Direct path

Self Interference → Reflected paths

Rx Data → Demod./digital echo canceller/decoding → Rx Signal
Echo Cancellation Wireline Modem

Complex Tx Symbols

Tx Filter/Modulator

DAC/low-pass filter

Hybrid coupler

Transmission Line

Near Echo Leakage

Bandpass filtering/IQ splitting/demodulation

Far-end Echo

Bulk delay line

Near echo canceller

Far echo canceller

To other receiver blocks

Timing recovery

Timing rate conversion

Sampled at 2xTx clock

At Rx clock

Nov. 1, 2014

Fuyun Ling
fling@twinclouds.com
Commonalities and Differences

• Commonalities:
 – The main objective is to remove the leaked Tx signal from the Rx signals
 – Need isolations between the Tx and Rx signals to reduce the self-interferences in the Rx signals
 – The residual interference are removed by interference cancellation techniques
 • The replica of interference signals are synthesized using known Tx signal and emulated interference channel
 • The synthesized interference are subtracted from the Rx signal
 • Input data are known uncorrelated Tx symbols
 • Achievable cancellation is mainly determined by the accuracy of channel estimation
 – Non-linearity is the main limiting factor
Commonalities and Differences (cont.)

• Differences:
 – The isolation can be more effective in wireless systems if using separate Tx and Rx antennas is feasible
 – Non-linearity is usually more severe in wireless systems
 • High power RF amplifier has high non-linearity
 • Reduction of phase-noise is also difficult in such systems
 • Analog canceller may be able to cancel part of such non-linear interferences
 – Wireless channel always has some time variation
 • It is true even for the self-interference channels
 • Time variation imposes another limit to the channel estimation accuracy
Cancelation limit due to time variation (cont.)

• Consider LMS or RLS algorithms for channel estimation
 – For static channel the estimator is optimal
 – For complex sinusoid variation with frequency ω_0:
 $$\left|1 - H(e^{j\omega_0})\right|^2 \approx \frac{(1 - \mu)^2 \omega_0^2}{(2 - \mu)^2 \omega_0^2 / 4 + \mu^2}$$
 • For general fading case, error can be computed by integration over the Doppler spectrum
 • 20 dB cancellation improvement for 10 times lower frequency
 – The reduction speed is not very fast because
 • High cancellation requirement
 • is usually very small, e.g., 10^{-3} to 10^{-5}, for small excess MSE at high receiver SNR
• Channel variation will impose a limit in achievable cancellation even at very low frequency, e.g., 0.05Hz
Concluding Remarks

• Total achievable cancelation may be expressed as:
 \[R_{c_{total}} \leq \min[(R_{NL} + R_{NL\text{-}compensation}), R_{ch\text{-}var}] + R_{Isolation} \]
 – The first term would be in the range of 30-60 dB
 – Isolation gain depending on the environment and possible antenna arrangement

• IBFC is most suitable for
 – applications when the channel attenuation is not too high, e.g.
 • for point to point systems, small cells, and/or
 • on the base station side.
 – It will be a challenge in high propagation loss and in complex environments, e.g., cellular system and handheld devices

• It is most important to check achievable cancellation before deciding its possible applications

• It’s not a miracle formula for doubling system capacity
Technology 2: Faster Than Nyquist (FTN) Signaling
FTN History and Today

• The concept of FTN was first introduced in a BSTJ paper by Jim Mazo in 1975.

• It has attracted attention in academia and industry lately.
 – Academia: Most earlier researches were done by researchers in Lund University, Sweden
 – Industry, it has been viewed as one of the candidate technologies for 5G PHY layer
 – References
Model of Band-Limited Communication Channel

- Overall baseband channel response in a communication system

\[x(t) = \sum_{n=-\infty}^{\infty} a_n f_T(t - nT) \]

- Receiver waveform:
 \[y(t) = \sum_{m=-\infty}^{\infty} a_m g_{ch}(t - mT) + z(t) \]

- Overall channel response:
 \[g_{ch}(t) = f_T(t) * h(t) * f_R(t) \]

where: \(a_n \) – Tx data symbols, \(T \) – symbol duration, \(h(t) \) – channel impulse response, \(z(t) \) – additive Gaussian noise in \(y(t) \)

For band-limited channels, the baseband frequency response of \(g_{ch}(t) \), satisfies: \(G_{ch}(\omega) = 0 \), for \(|\omega| > B_{ch}/2 \), where \(B_{ch} \) is channel bandwidth
ISI Free Channel – The Nyquist Criterion

• To recover the transmitted symbol a_n, the output of the composite channel is sampled at nT, which can be expressed as:

$$y(nT) = \sum_{m=\infty}^{\infty} a_m g_{ch}(nT - mT) + a_n g_{ch}(0) + z(nT)$$

 – The summation on the right side contains the ISI terms
 – In order for the sampled output is a good estimate of , it is desirable that the ISI terms are all equal to zero, ISI Free

• The channel is ISI free, if and only if $G_{ch}(f)$, the Fourier transform of $g_{ch}(t)$, satisfies:

$$\sum_{k=\infty}^{\infty} G_{ch}(f - \frac{k}{T}) = const, \text{ for } -\frac{1}{2T} \leq f < \frac{1}{2T}$$

Namely, the aliased spectrum is a constant. We call such a channel satisfying the Nyquist Criterion
The Nyquist Criterion (cont.)

- Common $G_{ch}(f)$ satisfies the Nyquist Criterion:
 - Brick-wall spectrum: $G_{ch}(f) = 1$ for $|f| \leq 1/T$, $G_{ch}(f) = 0$ for $|f| > 1/T$
 - Raised Cosine spectrum
 \[
 G_{ch}(f) = \begin{cases}
 1 & \text{for } |f| \leq (1 - \beta) / T, \\
 0 & \text{for } |f| > (1 + \beta) / T \\
 \frac{1}{2} \cos(f - 1 + \beta + 1) & \text{for } (1 - \beta) / T < |f| \leq (1 + \beta) / T
 \end{cases}
 \]
- Channel bandwidth: $-(1 + \beta) / T \leq f < (1 + \beta) / T$

- There are other spectrum shapes satisfy the Nyquist Criterion

- After sampling at $1/T$, the aliased signal spectrum has a width of $B = 1/T$ and its magnitude is a constant

- The non-brick-wall spectrum occupies a frequency band that is larger than $1/T$
Faster than Nyquest (FTN) Signaling

- Generation of faster than Nyquest (FTN) signaling
 - Data symbols, $a_{n,FTN}$, are generated at $1/T_d$, $T_d = \tau T$, $\tau < 1$, to yield an train of impulses spaced at every T_d, i.e. at the rate of $1/T_d > 1/T$.
 - The impulse train is filtered by a low-pass filter g_{FTN} with a frequency response $G_{FTN}(f) = 0$, for $|f| > (1 + \beta) / 2T$
 - This signaling does not satisfy Nyquist criterion for sampling rate of $1/T_d > 1/T$
 - There will be ISI of the data symbols

- FTN Receiver of FTN signaling
 - Signal is sampled at $1/T_s$ for $1/T_s > 1/(1+\beta)T > 1/T$
 - Traditional equalization techniques can be used to recover $a_{n,FTN}$.
Capacity of FTN signaling

• As shown by the researchers at Lund University, Sweden, FTN has a higher channel capacity than Nyquist signaling.

• Channel capacity for Nyquist signaling is

\[C = \log_2 \left(\frac{SNR + 1}{T} \right) = \log_2 \left(\frac{P_s / N_0 + 1}{T} \right) \]

with overall channel response satisfies Nyquist criterion.

• Channel capacity for FTN signaling

\[C_{FTN} = \int_{-\infty}^{\infty} \left[SNR(f) + 1 \right] df = \int_{-\infty}^{\infty} \left[P_s |G_{FTN}(f)|^2 + 1 \right] df \]

 – if \(\int_{-\infty}^{\infty} |G_{FTN}(f)|^2 df = 1 \), the total signal power remain the same, as in the Nyquist case.

 – Assuming he noise power spectrum is also the same, i.e., the power spectrum density is is a constant \(N_0 \)
Remarks

• The advantage of FTN relative to Nyquist signaling in single carrier systems is that it can better utilize the transition band spectrum

• How much better needs to be further evaluated

• From the analytical formula given above, the gain is higher when bits per Hz is large, i.e., at high spectrum efficiency regions.
 – Around 10 bits/symbol, a gain of 2 dB is possible.
 • This is equivalent to less than 7% of throughput gain
 – The gain will be much less for fewer bits per symbol

• It also makes timing synchronization more difficult

• FTN has been demonstrated to be more robust to the non-linearity effects in the Tx/Rx path.

• Is it worth it?